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Abstract  
Organisational resilience, defined as the capacity to absorb and recover from shocks affecting an organisation’s 
operations, becomes increasingly more important in today’s environment. While existing research has mainly 
explored structural and strategic factors contributing to organisational resilience, the role of managerial 
decision-making modes in this context remains underexamined. This paper addresses this gap by developing an 
agent-based model that simulates how different modes of decision-making affect resilience. The model captures 
stylised organisations as collections of interdependent departments operating on performance landscapes with 
varying complexity. The study compares silo-based, sequential, collaborative, and proposal-based decision-
making across 144 simulated scenarios, incorporating shocks of varying severity. The results reveal that 
collaborative and proposal-based decision-making modes enhance shock absorption and recovery in complex 
task environments, while simpler modes perform well in settings where tasks are less complex. Proposal-based 
coordination offers balanced performance. 
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1 Introduction  

The growing probability of disruptions, including economic, technological, and operational disruptions, 
makes it crucial for organisations to respond to crises and develop capabilities, enabling them to anticipate, 
absorb, adapt to, and recover from shocks. However, how daily business practices affect an organisation’s 
resilience remains largely unknown (Kantabutra and Ketprapakorn, 2021). A large proportion of existing research 
has focused on coping strategies and how they can be employed during and after shocks. More recently, the 
focus has shifted to strategies to anticipate shocks and how to prepare organisations to remain effective during 
crises (Grego et al., 2024). Another stream of research has analysed resilience through the lens of organisational 
structure, resource allocation, and strategic decision-making mechanisms (Banihashemi et al., 2024; Dahmen, 
2023; Garcia-Diaz, 2024; Swaminathan, 2022). For instance, Leitner (2025a, 2023) explores how emergent task 
allocation affects an organisation’s resilience, and You and Williams (2023) conclude that the design of intra-
organisational relationships is key to increasing organisational resilience. However, a significant gap remains 
unexplored: how do models of managerial decision-making – that is, modes of generating and coordinating 
decisions – shape an organisation’s capability to deal with shocks? Even though this dimension appears to be a 
critical determinant for organisational resilience, it has only received limited attention in research. 

This paper addresses this gap by developing an agent-based model of a stylised organisation to analyse how 
different decision-making modes affect an organisation’s ability to absorb and recover from shocks. The model 
is based on the 𝑁𝐾 framework (Levinthal, 1997; Wall et al., 2024; Wall and Leitner, 2021) that allows for 
modelling interdependent decision-making in organisational contexts. Specifically, the stylised organisations are 
conceptualised as a collection of departments that jointly operate on a performance landscape representing the 
task environment, whereby the ruggedness of the landscape is externally controlled and shaped by the 
interdependencies between tasks. Decision-making modes are conceptualised as different modes of how 
information is shared between departments and how adaptation finally takes place. The key decision-making 
modes analysed include proposal-based, silo-based, collaborative, and sequential approaches. The results 
indicate that not all decision-making modes are equally effective, depending on the complexity of an 
organisation's task. Decision-making modes that facilitate information exchange and mutual adaptation are 
advantageous in complex task environments, whereas simpler methods work well when organisational 
departments work on less complex tasks.  
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The remainder of the paper is structured as follows: Section 2 introduces the model and discusses the 
scenarios analysed in this paper. Section 3 presents and discusses the results. Section 4 concludes the paper.  

2 Model and simulation experiments 

This paper's model of a stylised organisation builds on the 𝑁𝐾 framework (Levinthal, 1997; Wall and Leitner, 
2021). The model is populated by 𝑀 ∈  ℕ agents representing departments. Agents operate on a 𝑁𝐾-landscape 
that defines the task environment. More specifically, the task environment captures an 𝑁-dimensional binary 
decision problem (𝑁 ∈  ℕ) with 𝐾 ∈ ℕ0 interdependencies between decisions, shaping the complexity of the 
decision problem. 

2.1 Task environment and decomposition 
Let us denote the 𝑁-dimensional decision problem by 𝒅 =  [𝑑1, … , 𝑑𝑁], where 𝑑𝑖 ∈ {1, 0} and 𝑛 = 1, … , 𝑁. 

Each decision 𝑑𝑖  contributes 𝑓(𝑑𝑖) ∼ 𝑈(0,1) to overall organisational performance. There exist 𝐾 
interdependencies between decisions, which is why the contribution of the decision 𝑓(𝑑𝑖) in addition to 𝑑𝑖  is 

affected by 𝐾 other decisions. Let us formalise this payoff function by 𝑓(𝑑𝑖) =  𝑓(𝑑𝑖 , 𝑑𝑖1
, … , 𝑑𝑖𝐾

), where 

{𝑖1, … , 𝑖𝐾} ⊆ {1, … , 𝑖 − 1, 𝑖 + 1, … , 𝑁}. The overall performance of a solution vector 𝒅 to the decision problem 

is defined as the average of all performance contributions: 𝑃(𝒅) =  1 |𝒅|⁄ ∑ 𝑓(𝑑𝑖)𝑁
𝑖=1 . 

The decision problem 𝒅 is sequentially and symmetrically divided into M disjoint sub-problems, and every 
department oversees one sub-problem, each consisting of 𝑄 = 𝑁 𝑀⁄  decision-making tasks. The allocation 

follows the following rule: 𝑑𝑚 = [𝑑{𝑄⋅(𝑚−1)+1}, … , 𝑑{𝑄⋅𝑚}]. In consequence, when there are 𝑁 = 15 decisions 

and 𝑚 = 5 departments, every department oversees 3 decisions.  

2.2 Shocks to the task environment 
The task environment might be affected by shocks. Specifically, the performance contributions 𝑓(𝑑𝑖) can 

change due to disruptions in the organisation’s environment. Consequently, the shape of the 𝑁𝐾-landscape 
might change as well. The model considers correlated shocks using a method proposed by Demirtas (2014) that 
uses a correlation parameter 𝜌 ∈ {−1, 1} 𝑡𝑜 control the severity of shocks. To do so, first two random numbers 
𝑣𝑖 ∼ 𝑈(0,1) and 𝑤𝑖 ∼ 𝐵(𝑎, 1) are drawn, where the shape parameter of the Beta distribution is a function of 

the correlation parameter, 𝑎 = 1 2 (√49 + 𝜌 1 + 𝜌⁄ − 5)⁄ . Then, the two random numbers are used to 

compute the correlated performance contribution according to the following rule: 
 

𝑓𝑐 (𝑑𝑖) = {
|𝑤𝑖–  𝑓(𝑑𝑖)|, 𝑣𝑖 < 0.5 ,

1 – |1 – 𝑤𝑖 −  𝑓(𝑑𝑖)|, 𝑣𝑖 ≥ 0.5 .
 

2.3 Utility function and decision-making modes 
Departments are modelled to be myopic utility maximisers, meaning they aim to immediately increase their 

utility (without considering long-term effects). Let us denote the utility of the department 𝑚 as follows:  
 

𝑈(𝒅𝑚𝑡 , 𝒅−𝑚𝑡) =  𝜆 ⋅ 𝑃(𝒅𝑚𝑡) + (1 − 𝜆) ⋅ 𝑃(𝒅−𝑚𝑡) , 
 
where 𝒅𝑚𝑡 and 𝒅−𝑚𝑡 denote the department 𝑚’s own and residual decisions, respectively, and departments 
are characterised by a linear incentive mechanism where the parameter 𝜆 is used to weight the department’s 
own and residual performance.  

Over time, departments can change their decisions at every time step, and departments can exchange 
information during this adaptation process according to the following decision-making modes (see also Blanco-
Fernández et al., 2025; Siggelkow and Rivkin, 2005).  

2.3.1 Silo-based decision-making 

In silo-based decision-making, departments gather information independently and do not share it with 
their colleagues. This means that departments are unaware of their colleagues’ decisions at a specific point in 
time and rather rely on their colleagues’ behaviours 𝒅−𝑚(𝑡−1) that have been observed in the previous period. 

In every period, every department identifies an alternative set of actions within their area of responsibility and 
in the neighbourhood of the currently implemented actions. Please note that the neighbourhood is defined by 



 

a Hamming Distance of 1 around 𝒅𝑚𝑡
∗ . In every period, every department must choose between either sticking 

with the status quo or adopting the newly discovered alternative. They do so according to the following rule: 
 

𝒅𝑚𝑡 = arg max
𝒅′  ∈(𝒅𝑚(𝑡−1) , 𝒅𝑚𝑡

∗ )

𝑈(𝒅′ , 𝒅−𝑚(𝑡−1) ) . 

 
Then, the collective solution to the overall decision problem in period 𝑡 is the combination of all actions taken 

by departments: 𝒅𝑡 = ⋃ 𝒅𝑚𝑡
𝑀
𝑚=1 . 

2.3.2 Collaborative decision-making 

In the collaborative decision-making mode, departments are connected in a ring network, and with fixed 
probability 𝑃, they perform collaborative decision-making as described below. In contrast, with the likelihood of 
(1 − 𝑃), they perform silo-based decision-making. 

Collaborative decision-making is implemented as adjacent hill-climbing (Yuan and McKelvey, 2004). 
Specifically, if departments 𝑚 and 𝑛 engage in collaborative decision-making, each of them identifies their 

alternatives 𝒅𝑚𝑡
∗  and 𝒅𝑛𝑡

∗  in the neighbourhood of 𝒅𝑚(𝑡−1) and 𝒅𝑛(𝑡−1), respectively. They share information 

during decision-making, which is why their joint residual decisions (i.e., the actions taken outside of department 

𝑚’s and 𝑛’s areas of responsibility) are denoted by 𝒅−(𝑚𝑛)(𝑡−1) = 𝒅𝑡−1 \ (𝒅𝑚(𝑡−1) ⋃ 𝒅𝑛(𝑡−1)).  

Then, the two departments make a decision that maximises their joint utility according to the following rule: 
 

(𝒅𝑚𝑡 , 𝒅𝑛𝑡) = arg max
𝒅𝑚

′  ∈(𝒅𝑚(𝑡−1), 𝒅𝑚𝑡
∗ )

𝒅𝑛
′  ∈(𝒅𝑛(𝑡−1), 𝒅𝑛𝑡

∗ )

𝑈𝑎𝑑𝑗(𝒅𝑚
′ ,  𝒅𝑛

′ ,  𝒅−(𝑚𝑛)(𝑡−1) ) , 

 

where the joint utility function 𝑈𝑎𝑑𝑗(⋅) is defined as the mean of the two individual utilities: 

𝑈𝑎𝑑𝑗(𝒅𝑚𝑡 ,  𝒅𝑛𝑡 ,  𝒅−(𝑚𝑛)(𝑡−1)) =
1

2
(𝑈(𝒅𝑚𝑡 ,  𝒅−𝑚(𝑡−1) ) + 𝑈(𝒅𝑛𝑡 ,  𝒅−𝑛(𝑡−1) )). 

2.3.3 Sequential decision-making 

In the sequential decision-making mode, departments make decisions one after another, with each 
department passing on information about its choices to those that have yet to decide, thereby reducing 
uncertainty for subsequent decision-makers. For simplicity, let us assume that the decision-making order follows 
the department indices. This means that the department 𝑚 = 1 starts with the decision-making procedure and 
informs departments 2 to 𝑀 about their decisions and, thereby, reduces the uncertainty about their residual 
actions. Let us redefine the vector of residual decision for the sequential decision-making mode as follows: 
 

𝒅−𝑚𝑡
𝑠𝑒𝑞 =  (𝒅1𝑡 , … , 𝒅(𝑚−1)𝑡 , 𝒅(𝑚+1)(𝑡−1), … , 𝒅𝑀(𝑡−1)) . 

 
As in the previous decision-making modes, department m identifies an alternative course of action 𝒅𝑚𝑡

∗  in the 

neighbourhood of 𝒅𝑚(𝑡−1), and next, the department assesses the two choices according to  

 

𝒅𝑚𝑡 = arg max
𝒅′  ∈(𝒅𝑚(𝑡−1) , 𝒅𝑚𝑡

∗ )

𝑈(𝒅′ , 𝒅−𝑚𝑡
𝑠𝑒𝑞

 ) . 

2.3.4 Proposal-based decision-making 

In the proposal-based method, departments explore and rank alternative lines of action locally and propose 
their ranked alternatives to a central authority. The central authority aggregates the proposals and makes the 
final decision, assuring global coherence of actions. Specifically, every department 𝑚 identifies an alternative 

𝒅𝑚𝑡
∗  in the neighbourhood of the status quo 𝒅𝑚(𝑡−1). The two options (the alternative and the status quo) are 

ranked concerning expected utility (using the utility function introduced in Section 2.3.1). Then, the ranked 

options (𝒅𝑚𝑡
(1)

, 𝒅𝑚𝑡
(2)

) are forwarded to a central coordinating unit. The central unit combines the proposals of all 

𝑀 departments by concatenating all proposals ranked first and second, respectively, according to the rule 𝒅𝑡
(𝑗)

=

 ⋃ 𝒅𝑚𝑡
(𝑗)𝑀

𝑚=1 , where 𝑗 ∈ {1, 2}. Finally, the coordinating unit evaluates the combined proposals concerning the 
highest performance and makes the final decision as follows: 



 

 
𝒅𝑡 = arg max

𝒅′ ∈{𝒅𝒕
(1)

, 𝒅𝒕
(2)

}

𝑃(𝒅′) . 

 
2.4 Simulation experiments 

The following four parameters of the model are considered variables to construct scenarios: 

• The performance landscape on which departments operate follows the logic of the 𝑁𝐾 model 
introduced above. Specifically, landscapes with two levels of complexity are considered, whereby the 
interactions follow the patterns in Figure 1. Specifically, in the case of (i) small diagonal blocks, tasks are 
organised into modular structures, meaning interdependencies exist within departments but not 
between them. This structure simplifies decision-making and is referred to as decomposable tasks, as 
each department operates independently. In the case of (ii) reciprocal interdependencies, tasks assigned 
to departments are highly interconnected, with interdependencies both within and between 
departments. This pattern requires coordinated decision-making across departments to manage 
complexity effectively (Leitner, 2024). 

• Four decision-making modes, namely (i) silo-based decision-making, (ii) collaborative decision-making 
(with different probabilities of joint decision making), (iii) sequential decision-making, and (iv) proposal-
based decision-making, are considered. For details on the decision-making modes, see Sections 2.3.1 to 
2.3.4. 

• Two configurations are considered for the incentive mechanism: λ ∈ {0.25, 1} for group-based and 
individualistic incentives, respectively. For details on how the incentive parameter affects utility, see 
Section 2.3. 

• Shocks of different severity are considered, ranging from severe (ρ = −0.5) to moderate (ρ=0) and 
slight shocks (ρ=0.5). For details on how shocks are implemented, see Section 2.2.  

 

  
Figure 1: Interdependence patterns 

Left: reciprocal interdependencies, right: decomposable tasks 

 
The dimensionality of the decision problem is fixed at 𝑁 = 15, and the number of departments is set to 𝑀 =

5. The parameter variations yield a total number of 144 scenarios. For these scenarios, simulations per scenario 
have been performed, whereby based on the coefficient of variation, the number of simulations per scenario is 
set 150. Each simulation run spans 500 timesteps, with shocks occurring after 250 timesteps. Statistical tests 
confirm that the performance time series (both before and after a shock) reaches stationarity after 
approximately 240 timesteps. The simulation model is implemented in Python.  

3 Results and Discussion 

At the core of this paper is the organisation’s ability to absorb and recover from shocks. Before shocks occur 
in the task environment, decision-making modes already shape an organisation’s position within that 
environment, influencing whether it operates near a global or local maximum when a shock occurs (Leitner, 
2025b). In task environments with (nearly) decomposable tasks, most decision-making modes lead to 
organisations (almost) achieving the global maximum. In contrast, when task decomposition is characterised by 
reciprocal interdependencies, the global maximum cannot be reached in most cases, whereby proposal-based 
and collaborative decision-making modes lead to higher task performance compared to silo-based and 
sequential modes (Siggelkow and Rivkin, 2005). These findings align with existing literature, and the proposed 



 

model successfully replicates them (Rand and Wilensky, 2006). This replication confirms that the model has a 
relatively high construct validity, indicating that the model is capable of capturing core features of organisational 
adaptation theorised using 𝑁𝐾 model and complex system approaches.  

During the simulations, organisations experience a shock to their task environment after 250 timesteps and 
are modelled to resume operations immediately afterwards. Shock absorption is assessed by comparing 
performance immediately before and after the shock, while recovery is evaluated based on performance after 
250 additional time steps. Differences are evaluated using the Mann-Whitney U test, and the U statistic is used 
to compute the rank-biserial correlation as an effect size measure. To efficiently report the results, 𝑘-means 
clustering was applied to group the 144 scenarios into nine distinct clusters. The optimal number of clusters was 
determined using the Davies-Bouldin and Caliński-Harabasz indices. Clustering of scenarios allows for detecting 
structural patterns rather than merely reporting isolated scenarios. A log-likelihood ratio test assessed the 
significance of different parameters for the clustering solution. In consequence, the analysis approach allows for 
the interpretation of resilience as emerging from interactions with the organisational context. The results 
indicate that interdependence pattern, decision-making mode, and shock correlation significantly influence the 
clustering structure; the results are organised along these dimensions. 

Table 1 presents the cluster profiles for organisations operating in environments with decomposable tasks, 
while Table 2 focuses on environments with reciprocal interdependencies. Scenarios are further grouped within 
each table based on shock severity (slight vs. moderate to severe shocks). Both tables report two primary 
outcomes: (i) the capability to absorb shocks, comparing performance immediately before (period 249) and 
immediately after the shock (period 250), and (ii) the capability to recover from shocks, comparing performance 
before the shock (period 249) and after a recovery period (period 500). For each cluster, the average rank-
biserial correlation (as a measure of effect size) and its standard deviation are reported. Additionally, the 
dominant decision-making modes characterising each cluster are indicated. 
 

Table 1: Results for decomposable tasks 
 

# Scenarios 

Absorbing shocks 
(period 249 vs. 250) 

Recovering from shocks  
(period 249 vs. 500) Decision-making mode 

Average Std Average Std 

Slight shocks: 
8 -0.6092 0.0705 0.1618 0.0284 Collaborative (low/mean 

probability) 
Proposal-based 

18 -0.6401 0.0975 0.0755 0.0212 Collaborative (high probability) 
Sequential 
Silo-based 

 
Moderate to severe shocks: 

30 -0.8831 0.0580 -0.0065 0.0258 Collaborative (low/mean 
probability) 
Proposal-based 

19 -0.9061 0.0575 0.0202 0.0202 Collaborative (high probability) 
Sequential 
Silo-based 

 
The results indicate that organisational resilience – more specifically, an organisation’s capability to absorb 

and recover from shocks – is contingent on both the decision-making mode that is effective in the organisation 
and the complexity of the task environment. In low-complexity task environments, where tasks assigned to 
departments have minimal interdependencies and are perfectly decomposable into disjoint areas of 
responsibility, organisations exhibit higher overall performance, and decision-making modes play a lesser role 
in resilience. When a shock disrupts the task environment, organisations using proposal-based and collaborative 
decision-making modes experience a smaller initial performance drop than those relying on silo-based or 
sequential decision-making mechanisms in environments with decomposable tasks (see Table 1). This 
observation is driven by almost independently operating departments (on smooth performance landscapes), 
leading to even simple decision-making rules performing well. However, the cost of uncoordinated action 
increases as the task environment becomes more complex and the performance landscape becomes more 



 

rugged (see Table 2). Here, organisations employing collaborative or sequential decision-making modes 
experience a more pronounced drop in performance. This observation can be explained by the fact that the 
proposal-based and collaborative decision-making modes facilitate mutual adaptation. Specifically, these modes 
allow departments to align their decisions, leading them to favourable positions in the landscape, i.e., positions 
that are likely also viable after a shock. 

 
Table 2: Results for non-decomposable tasks 

Slight shocks: 
15 -0.2273 0.0731 -0.0993 0.0377 Collaborative (low probability) 

Silo-based 
19 -0.3563 0.1023 0.0331 0.0360 Collaborative (mean/high 

probability) 

 
Moderate to severe shocks: 

6 -0.4361 0.0676 -0.2344 0.0483 Silo-based 
19 -0.5680 0.0833 -0.0134 0.0312 Collaborative (mean/high 

probability) 
110 -0.5698 0.1034 -0.1209 0.0243 Sequential 

 
Recovering from shocks depends on shock severity and an organisation's capability to coordinate actions 

after the shock. In complex environments, collaborative decision-making modes facilitate better recovery 
because they facilitate coordinated adaptations across departments. In contrast, organisations using silo-based 
and sequential decision-making modes often struggle to regain previous performance levels, leaving them 
trapped in suboptimal positions. In task environments of low complexity, organisations regain pre-shock 
performance in all cases. The relationship between task complexity and effectiveness of the decision-making 
mode is further moderated by shock severity: Slight shocks only result in moderate shifts in the performance 
landscape, enabling recovery over time in all decision-making modes. Interestingly, when the task environment 
is of low complexity and shocks are moderate, collaborative and proposal-based decision-making modes can 
help organisations achieve significantly better performance post-shock. In contrast, severe shocks lead to drastic 
performance drops, and when there is a lack of coordination across departments, as in silo-based modes, 
recovery is difficult. On the other hand, collaborative and proposal-based decision-making modes support tight 
coordination, allowing for effective recovery.  

These findings are relevant for the design of real-world organisations. The results confirm that decentralising 
decisions to the department level can achieve high performance and strong recovery capability in modular and 
relatively stable environments, such as traditional manufacturing lines or standardised service operations. In 
more complex and volatile environments, such as emergency response coordination and digital product 
development, cross-departmental coordination and joint action (as in the collaborative mode) become 
increasingly essential. The results also indicate that organisations are better off in dynamic environments when 
they not only support communication between departments but also facilitate joint exploration and mutual 
adjustment.  

4 Conclusion 

This paper presents an agent-based model of a stylised organisation operating in a dynamic task environment 
subject to external shocks. The model investigates how different decision-making modes influence an 
organisation’s ability to absorb and recover from such shocks. The findings suggest that specific decision-making 
modes offer advantages depending on the complexity of the environment. Complex task environments 
characterised by reciprocal interdependencies benefit from decision-making structures that support information 
exchange and mutual adaptation. In contrast, simpler decision-making modes may work efficiently in less 
complex settings. These results highlight the importance of aligning decision-making structures with 
environmental complexity. The study contributes to resilience research by incorporating an organisation’s pre-
shock positioning within the task environment into the resilience analysis. It highlights that crisis response 

# Scenarios 

Shock absorption 
(period 249 vs. 250) 

Recovering from shocks  
(period 249 vs. 500) 

Decision-making mode 

Average Std Average Std  



 

mechanisms do not solely determine resilience but are also influenced by the decision-making architecture in 
place before the shock.  

Future research could account for the fact that firms differ in their ability to respond to crises. Prior 
performance plays a critical role: organisations that perform well before a shock can often accumulate slack 
resources, enabling a more immediate and effective response, while less successful organisations may lack this 
capacity (Smallbone et al., 2012). Extending the model to incorporate this dynamic would enhance its realism. 
Moreover, to increase the generalizability of results, future studies should explore additional interdependence 
patterns and examine whether consistent behavioural patterns emerge across different organisational contexts. 
Future research could also examine how decision-making modes evolve and investigate the influence of 
additional contextual factors such as organisational culture and leadership. 
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