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Abstract. Organizations face numerous challenges posed by unexpected
events such as energy price hikes, pandemic disruptions, terrorist attacks,
and natural disasters, and the factors that contribute to organizational
success in dealing with such disruptions often remain unclear. This paper
analyzes the roles of top-down and bottom-up organizational structures
in promoting organizational resilience. To do so, an agent-based model
of stylized organizations is introduced that features learning, adapta-
tion, different modes of organizing, and environmental disruptions. The
results indicate that bottom-up designed organizations tend to have a
higher ability to absorb the effects of environmental disruptions, and sit-
uations are identified in which either top-down or bottom-up designed
organizations have an advantage in recovering from shocks.
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1 Introduction

Organizations face numerous challenges posed by unexpected events, including
sudden energy price hikes, pandemic disruptions, terrorist attacks, and natural
disasters. Some organizations appear to be more adept than others in handling
and recovering from such disruptions, as evidenced by anecdotal accounts [6].
However, the factors that contribute to an organization’s success in dealing with
and recovering from disruptions are not always clear [14].

Resilience, a key concept in organizational research, has gained considerable
attention over the last twenty years, leading to varied applications in differ-
ent sectors and topics [8,14]. The concept traces back to Staw et al. [21] and
Meyer [16], who examined how organizations respond to external threats. After
initial focus on internal threats, post-9/11 research shifted to external threats,
expanding the application of Staw and colleagues’ and Meyer’s ideas. Recent
studies, especially in supply-chain research, offer varied definitions of resilience.
Ponomarov and Holcomb [18] see it as preparation and recovery from unforeseen
events, while Christopher and Peck [3] view it as bouncing back or improving
after a shock, a perspective shared by resilience engineering [9].

Research on resilience often operates in isolation across levels (individual,
team, organization) and scientific disciplines, hindering the development of in-
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tegrated research [20]. As a result, it is challenging to gain a comprehensive
understanding of resilience particularly across different levels.

There are, however, some papers that have addressed the issue of multi-level
factors in the context of resilience. For instance, Youssef and Luthans [25] argue
that organizational assets may enable organizational resilience, and resilience at
the leader level may increase employee resilience. Branicki et al. [2] propose that
individual-level resilience of entrepreneurs might enable organizational resilience.
Some studies have provided empirical evidence for multi-level effects of resilience.
For instance, Prayag et al. [19] provide evidence for multi-level resilience in the
tourism sector, while McEwen et al. [15] demonstrate the importance of multi-
level resilience for small and medium-sized enterprises.1

This paper seeks to enhance the current understanding of resilience across
different organizational levels. Specifically, this study examines the (macro-level)
resilience of, first, newer organizational forms, such as holacracies and self-
organized organizations, which share the common feature of relying on different
forms of bottom-up task allocation at the micro-level and, second, traditional
organizational forms are typically designed top-down, with task allocation be-
ing dictated from the top of the organization. The primary question that this
research aims to answer is whether, and if so, under which circumstances, orga-
nizations are more resilient to disruptions in the environment. The specific focus
of the analysis is on which type of organization can (i) better absorb the effects
of disruptions in the environment and (ii) better recover from such shocks.

This research builds upon previous work on autonomously (bottom-up) de-
signed organizations. In [12], the author presents the results of an extensive
analysis of the interplay between bottom-up task allocation that is governed by
short-term or long-term oriented motives, learning at the individual level, and
incentives. This work is further extended in [11], where the interplay between dif-
ferent incentive mechanisms and search modes in organizational decision-making
is analyzed. Both papers consider disruption-free environments. The research
presented in this paper extends these models by (i) incorporating a model of en-
vironmental disruptions with external control over the severity of the disruption,
and (ii) including a more detailed model of the motives that individual agents
follow during autonomous task allocation. The findings suggest that top-down
designed organizations, compared to their bottom-up designed counterparts, typ-
ically experience a more significant decline in organizational performance when
disruptions occur. Furthermore, while top-down designed organizations may have
an advantage in recovering from disruptions in certain contexts, the more flexi-
ble and decentralized structure of bottom-up designed organizations may better
equip them to recover from disruptions in a wider range of scenarios.

The remainder of this paper is structured as follows. In Sec. 2, an agent-based
model of organizations with top-down or bottom-up task allocation is introduced.
Section 3 is dedicated to presenting and discussing the results on the ability of

1 For a comprehensive review of the literature on organizational resilience, readers are
referred to the work of Raetze et al. [20] and Linnenluecke [14], among others.
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organizations to absorb and recover from disruptions in the environment. Finally,
Sec. 4 summarizes the key findings of this paper

2 Model

The stylized model of an organization is based on the NK framework [24,13].
Organizations consist of M ∈ N departments, each represented by an agent.
These agents work together on a performance landscape that represents an N -
dimensional binary decision problem, with N ∈ N. The decision-problem’s N
dimensions are interconnected, with K ∈ N0 interdependencies affecting the
ruggedness of the landscape on which the agents operate.

2.1 Task environment

Landscapes The N -dimensional binary decision problem can be denoted as
d = [d1, d2, . . . , dN ], where dn ∈ {0, 1} and n = 1, . . . , N . Each decision dn con-
tributes f(dn) ∼ U(0, 1) ⊂ R to the organizational performance. However, due
to potential interdependencies, the performance contribution f(dn) is not solely
determined by decision dn but also by K ∈ N0 other decisions. The correspond-
ing pay-off function can be formalized as f(dn) = f(dn, di1 , . . . , diK ), where
{i1, . . . , iK} ⊆ {1, . . . , i − 1, i + 1, . . . , N}. The performance P (d) of solution d
is the average of all N performance contributions:

P (d) =
1

|d|

N∑
i=1

f(dn) . (1)

Disruptions in the environment While agents operate on the performance
landscape, there may be disruptions that affect the performance contributions
f(dn), causing the shape of the landscape to change. This paper specifically con-
siders such shocks, and the model allows for controlling their severity through
the correlation parameter ρ ∈ (−1, 1) ⊂ R. The correlated performance con-
tributions f c(dn) are created following the procedure proposed in [5]. First,
vn ∼ U(0, 1) ⊂ R and wn ∼ B(a, 1) ⊂ R are drawn. The shape parameter a
of the latter Beta distribution is a function of the correlation parameter:

a =
1

2

(√
49 + ρ

1 + ρ
− 5

)
. (2)

Next, vn and wn are used to compute the correlated performance contribution
f c(dn) as follows:

f c(dn) =

{
|wn − f(dn)| if vn < 0.5

1− |1− wn − f(dn)| if vn ≥ 0.5 .
(3)
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2.2 Search process

The tasks that are assigned to agent m and are represented by dm, which is
referred to as agent m’s area of responsibility. The remaining tasks, i.e., those
not assigned to agent m, are referred to as residual tasks and are denoted by
d−m. The organization has introduced a linear incentive mechanism that takes
into account both the agents’ individual and residual performances and uses the
incentive parameter λ ∈ (0, 1) ⊂ R to weigh them. The utility of agent m in
period t can be expressed as:

U(dmt,d−mt) = λ · P (dmt) + (1− λ) · P (d−mt) . (4)

In each period, the agents aim to improve the performance of their tasks and
increase their utility. To achieve this goal, they search for a better solution d∗

mt

to their partial decision problem within the neighborhood of the current solution.
The neighborhood is defined by a Hamming distance of 1. During this search
process, agents do not communicate with each other. Therefore, they rely on
the residual tasks of the previous period, represented by d−mt−1. Based on this,
agents make their decision in period t by following the below rule:

dmt = argmax
d′∈{d∗

mt,dmt−1}
U(d′,d−mt−1) (5)

At the organizational level, the overall solution is achieved by combining the
solutions to the partial problems, dt = ∪M

m=1dmt, and the corresponding perfor-
mance can be computed using Eq. 1.

2.3 Learning mechanism

The agents know that their tasks are interdependent but lack precise knowledge
about the value of K and the patterns of these interdependencies. Nevertheless,
they utilize their observations to form expectations about these interdependen-
cies. Once the solution dt is implemented, all agents can observe its performance
contribution in their respective areas of responsibility, denoted by f(dit) where
dit ∈ dmt. Agent m maintains a record of the number of instances where they
observed interdependence and non-interdependence between task di and perfor-
mance contribution f(dj) up to period t, represented by αij

mt ∈ N and βij
mt ∈ N,

respectively, where i, j ∈ N and i ̸= j.2 Over time, the values of α and β are
updated using the following rule:

(αij
mt, β

ij
mt) =


(αij

mt−1, β
ij
mt−1) if dt = dt−1 ,

(αij
mt−1 + 1, βij

mt−1) if dt ̸= dt−1 and f(djt) ̸= f(djt−1) ,

(αij
mt−1, β

ij
mt−1 + 1) if dt ̸= dt−1 and f(djt) = f(djt−1) .

(6)

2 Note that in the first period, α and β are set to one, resulting in initial beliefs of 0.5
as shown in Eq. 7.
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Let us represent agent m’s expectation regarding the interdependence between
decisions di and dj in period t by ηijmt ∈ (0, 1) ⊂ Q. Specifically, these expecta-
tions are defined as the mean of a Beta distribution,

ηijmt = E(X) =
αij
mt

αij
mt + βij

mt

,where X ∼ B(αij
mt, β

ij
mt) . (7)

2.4 Task allocation

Bottom-up task allocation If organizations are designed bottom-up, the tasks
assigned to agent m, which are represented by dmt, can change over time as the
agents are allowed to reallocate tasks periodically every τ periods. However,
agents are restricted in the number of tasks they can handle at a time, such that
the number of tasks assigned to an agent is limited to the interval (1, C) ⊂ N.
The reallocation process involves several steps. Firstly, agents offer a task that
falls within their responsibility areas to other agents. Secondly, all agents are
notified of the offers, and they can signal their willingness to take charge of the
offered tasks.

Offering tasks During the reallocation process, agents take into account two
crucial factors when deciding which task to offer:

(i) To assess the impact of task reallocation on utility in period t, agentm calcu-
lates the difference between their utility with and without being responsible
for a specific task dit ∈ dmt. The expected change in agent m’s utility if task
dit is assigned to another agent is denoted by

U−(dmt,d−mt, dit) = U(dmt \ {dit},d−mt ∪ {dit})− U(dmt,d−mt) , (8)

where the symbols \ and ∪ indicate the set difference and union, respectively.
(ii) The second dimension concerns the extent to which the task allocation aligns

with their beliefs regarding interdependencies between tasks. In this perspec-
tive, agents aim at maximizing interdependencies within their own areas of
responsibility and minimizing the interdependencies of their tasks with the
tasks assigned to other agents, a concept known as modularization or “mir-
roring hypothesis” [4]. To estimate this factor, agent m calculates their belief
regarding the interdependencies between task dit and the other tasks within
their area of responsibility as follows:

H(dmt, dit) =
∑

∀j:djt∈dmt

i ̸=j

ηijmt . (9)

By considering these two factors, agent m offers the following task to the other
agents:

d̃mit = argmin
d′∈dmt

(
γ ·

(
1− U−(dmt,d−mt, d

′)
)
+ (1− γ) ·H(dmt, d

′)
)
, (10)
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where γ ∈ (0, 1) ⊂ R reflects the extent to which agents consider these two
factors during the reallocation.3 It’s important to note that agents are only able
to offer tasks if the number of tasks assigned to them, denoted by |dmt|, is greater
than one.

Signals and task reallocation After all agents have identified the tasks they want
to reallocate, they are notified of all available tasks. If an agent, say agent m,
has free resources, meaning 1 ≤ |dmt| < C, they express their interest in all
tasks by sending a signal. The signal for task d̃nit that agent m sends, where
n = 1 . . . ,M , is determined by the following rule:

sm(d̃nit) = γ · U+(dmt,d−mt, d̃nit) + (1− γ) ·H(dmt, d̃nit) , (11)

where

U+(dmt,d−mt, d̃nit) = U(dmt ∪ {d̃nit},d−mt\{d̃nit})−U(dmt,d−mt)+ε . (12)

To account for agents’ imperfect ability to predict the performance contributions
of tasks outside their area of responsibility, Eq. 12 includes an error term denoted
as ε, which follows a normal distribution with mean 0 and variance 0.01. After all
agents have sent their signals, tasks are reassigned to the agent with the highest
signal for each task. However, if the highest signal for task d̃mit is offered by
agent m and has a value of sm(d̃mit), the task is not reassigned, and agent m
continues to be responsible for the task until the next round of reallocation.

Top-down task allocation In the case of top-down designed organizations, it
is assumed that a “central organization designer” is aware of K and the pattern
of interdependencies between tasks, and this designer allocates tasks to agents to
minimize cross-interdependencies between departments. This approach is in line
with the more classical school of thought of organizational design. In this paper,
this can be achieved by a symmetric and sequential task allocation, meaning that
every agent is in charge of the same number of tasks, and agent 1 is responsible
for the first N/M tasks, agent 2 is in charge of tasks the next N/M tasks, etc.

2.5 Parameters and data analysis

This paper presents an analysis of the robustness of organizations in the face of
unexpected shocks. Specifically, this paper investigates the organizational perfor-
mance of bottom-up designed organizations compared to their top-down coun-
terparts. To achieve this, we compare the performance metrics of these organi-
zations, placing particular emphasis on the following four variables:

3 It is worth noting that Eq. 10 returns the argument that minimizes the function. As
agents aim to maximize their utility and performances are normalized to one, the
utility is reflected by (1− U−(dmt,d−mt, d

′)) in Eq. 10.
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(a) Modular (b) Non-modular

Fig. 1: Interdependence patterns

Table 1: Parameters

Type Variables Notation Values

Independent variables

Shock correlation ρ {-0.5, 0.5}
Interdependence pattern Pattern {modular, non-modular}
Re-allocation weight γ {0, 1}
Incentive parameter λ {0.33, 1}
Time t {0 : 1 : 200}

Dependent variable Normalized task performance P̃t [0, 1]

Other parameters

Number of tasks N 15
Number of agents M 5
Agents’ cognitive capacities C 7
Task re-allocation interval τ 20
Time until shock – 50
Prediction error ε N(0, 0.01)
Number of simulations S 600
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1. The analysis consider external shocks of different severity, i.e., the study
investigates the impact of external shocks on organizational performance by
introducing correlated NK performance landscapes with correlations from
ρ ∈ {−0.5, 0.5} to simulate positive and negative shocks (see Eqs. 2 and 3).

2. The paper explores the effect of different pieces of information on agents’
autonomous task re-allocation decisions, as presented in Eqs. 8 to 12. The
analysis is simplified to the two extreme cases of γ ∈ {0, 1}, which rep-
resent scenarios where agents prioritize mirroring and the impact of task
re-allocation on utility, respectively.

3. The paper examines the role of incentive mechanisms in regulating agent
behavior, given that they are the organization’s sole means of control. The
analysis focuses on variations in the incentive parameter (see Eq. 4). Specif-
ically, cases with altruistic mechanisms that place little (λ = 0.33) emphasis
on an agent’s residual performance, and individualistic mechanisms that only
consider the performance generated within an agent’s area of responsibility
(λ = 1) are considered.

4. The study analyzes landscapes with patterned interactions of varying com-
plexity. We examine two specific cases: (a) decomposable tasks with interac-
tions patterns that enable a symmetric full modularization of tasks, with no
interdependencies between subtasks, and (b) non-decomposable tasks with
reciprocal interdependencies that preclude full modularization due to the
complexity of the tasks. The interaction patterns are illustrated in Fig. 1.
The shaded areas in Fig. 1 indicate the task allocation in the benchmark
cases (with top-down task allocation).

In order to ensure that the results are comparable both within and across scenar-
ios and simulation runs, the analysis adopts the average normalized performance
as the primary measure of organizational performance. To compute the average
normalized performance for a given scenario, performance achieved by the or-
ganization in simulation run s ∈ {1, . . . , S} and period t is normalized by the
maximum achievable performance in that simulation run and at that point in
time. Let us denote the maximum attainable performance in simulation run s
and period t by Pmax

st . The average normalized performance in period t is then
computed as follows:

P̄t =
1

S

S∑
t=1

P (dt)

Pmax
st

. (13)

The average normalized performances before and immediately after the shock
event are presented in Tab. 2, while the performances after the organization had
time to recover from the shock are presented in Tab. 3. Moreover, Tab. 2 reports
the absolute difference between the performances attained at two different points
in time, denoted by τ and t, as follows: ∆τ :t = P̄t − P̄τ , and Tab. 3 reports the
corresponding relative difference, ∆rel

τ :t = (P̄t − P̄τ )/P̄τ .
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3 Results

3.1 Ability to absorb external shocks

The results of scenarios implementing bottom-up task allocation, which account
for parameter variations outlined in Sec. 2.5, as well as the corresponding bench-
mark scenarios, are presented in Tab. 2. This table displays the normalized per-
formances achieved immediately before and after an external shock in columns
P̃50 and P̃51, respectively, as well as the effects of such shocks on organizational
performance in column ∆50:51. Furthermore, the column labeled ”Sign.” offers
insights into whether scenarios employing bottom-up task allocation differ sig-
nificantly from benchmark scenarios in terms of the severity of shocks.

The absolute performances attained prior to the occurrence of external shocks
reflect the findings previously presented in research studies. In cases featuring
both bottom-up and top-down task allocation, performances are observed to be
higher for scenarios with modular task structures than those with non-modular
task structures [23]. Additionally, [11] reports that the relative advantage of top-
down task allocation is more evident when individualistic incentive mechanisms
are effective within the organization. Finally, as proposed by [12], utility-based
task re-allocation mechanisms outperform self-organized approaches that follow
the mirroring hypothesis if individualistic incentives are in place.

Regarding the severity of shocks, the findings presented in Tab. 2 indicate
that moderate (positively correlated) shocks have less pronounced effects com-
pared to more severe (negatively correlated) shocks. It is worth noting that the
performances of top-down-designed organizations after a shock remain higher
compared to those of bottom-up-designed organizations, which is consistent with
previous research [23]. This finding also corroborates Nissen’s concept of static
organizational fit [17], highlighting its strengths in steady conditions and weak-
nesses during major upheavals. It uncovers a trade-off between organizational
efficiency and adaptability, mirroring similar dynamics observed in supply chains
and food networks by de Arquer et al. [1] and Karakoc and Konar [10]. However,
the outcomes also demonstrate that organizations utilizing traditional top-down
task allocation experience considerably greater declines in performance in almost
all cases than those employing bottom-up task allocation. Hence, the results sug-
gest that organizations utilizing bottom-up task allocation demonstrate a greater
ability to absorb the absolute effects of shocks, highlighting the importance of
task allocation approaches in enhancing organizational resilience.

3.2 Ability to recover from external shocks

Section 3.1 focuses on the immediate effects of external shocks on an organiza-
tion’s performance. In contrast, this section examines the organization’s ability
to recover from such disturbances in its environment. Table 3 presents the at-
tained performance before (P̃50) and after 100 (P̃100) and 200 periods (P̃200). The
resulting recovery metrics are presented in terms of the relative performance lev-
els after 100 and 200 periods, represented by the columns ∆rel

50:100 and ∆rel
50:200,
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Table 2: Ability to absorb shocks

Parameters Bottom-up Benchmark
Sign.

Shock Pattern Task alloc. Incentive P̄50 P̄51 ∆50:51 P̄50 P̄51 ∆50:51

positive

modular
mirroring

altruistic 0.835 0.773 -0.062 0.937 0.864 -0.073 ∗
individual 0.766 0.733 -0.033 0.936 0.868 -0.069 ∗∗

utility
altruistic 0.856 0.805 -0.051 0.937 0.864 -0.073 ∗∗
individual 0.829 0.780 -0.049 0.936 0.868 -0.069 ∗∗

non-modular
mirroring

altruistic 0.723 0.681 -0.042 0.742 0.711 -0.032 n.s.
individual 0.674 0.664 -0.010 0.736 0.712 -0.024 ∗

utility
altruistic 0.720 0.687 -0.033 0.742 0.711 -0.032 n.s.
individual 0.692 0.677 -0.016 0.736 0.712 -0.024 n.s.

negative

modular
mirroring

altruistic 0.837 0.676 -0.161 0.939 0.760 -0.179 ∗
individual 0.771 0.691 -0.081 0.935 0.767 -0.168 ∗∗

utility
altruistic 0.853 0.700 -0.154 0.939 0.760 -0.179 ∗∗
individual 0.832 0.694 -0.138 0.935 0.767 -0.168 ∗∗

non-modular
mirroring

altruistic 0.728 0.644 -0.084 0.737 0.665 -0.072 n.s.
individual 0.677 0.641 -0.036 0.742 0.670 -0.072 ∗∗

utility
altruistic 0.714 0.649 -0.065 0.737 0.665 -0.072 ∗
individual 0.701 0.651 -0.050 0.742 0.670 -0.072 ∗∗

Parameters: Shock: Correlation of shocks ρ; Pattern: Interdependence pattern; Task alloc.: Re-
allocation weight γ, Incentive: Incentive parameter λ (see Tab. 1).
Symbols: P̄t: average normalized performance in period t (Eq. 13); ∆τ:t: absolute difference between
normalized performances in periods τ and t.
Significance between cases with bottom-up allocation and benchmark scenarios is computed using a
student’s t-test: n.s.: p > 0.05; ∗: p ≤ 0.05; ∗∗: p ≤ 0.01.
Red (italic) formatting indicates the scenarios in which shocks have significantly more severe effects.

respectively, compared to the performance before the shock. Additionally, bold
(green) and italic (red) formatting is utilized to indicate significantly higher and
lower attained performance levels, respectively, relative to the pre-shock perfor-
mance.

Scenarios with bottom-up task allocation In scenarios featuring bottom-
up task allocation, the mode of task re-allocation emerges as a critical design
parameter in fostering an organization’s resilience to shocks. Specifically, when
agents make task re-allocation decisions based on their personal utility instead of
aligning them with the logic of the mirroring hypothesis, an organization’s per-
formance after a shock is significantly improved compared to the performance
before the shock. This finding holds true across analyzed incentive parameters
and for both moderate (positively correlated) and more severe (negatively cor-
related) shocks. The result is consistent in the short term (50 periods after a
shock) and becomes more pronounced over the long term (100 periods after a
shock). Conversely, if agents align their re-allocation decisions with the mirroring
hypothesis, they can still recover from shocks in most cases and attain pre-shock
performance levels. When organizations encounter a non-modular task struc-
ture, they exhibit the ability to recover from environmental disruptions in all
cases over the long term, with organizations achieving pre-shock performance
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Table 3: Ability to recover from shocks

Parameters Before shock Recovery in t = 100 Recovery in t = 200

Shock Pattern Task alloc. Incentive P̄50 P̄100 ∆rel
50:100 P̄200 ∆rel

50:200

Scenarios with bottom-up task allocation

positive

modular
mirroring

altruistic 0.835 0.822 -1.60% ∗∗ 0.826 -1.06% n.s.
individual 0.766 0.770 0.55% n.s. 0.769 0.40% n.s.

utility
altruistic 0.856 0.886 3.45% ∗∗ 0.898 4.93% ∗∗
individual 0.829 0.864 4.15% ∗∗ 0.877 5.75% ∗∗

non-modular
mirroring

altruistic 0.723 0.705 -2.48% ∗∗ 0.724 0.10% n.s.
individual 0.674 0.690 2.38% ∗∗ 0.684 1.50% n.s.

utility
altruistic 0.720 0.711 -1.28% n.s. 0.714 -0.82% n.s.
individual 0.692 0.697 0.67% n.s. 0.702 1.41% n.s.

negative

modular
mirroring

altruistic 0.837 0.820 -2.07% ∗∗ 0.828 -1.07% n.s.
individual 0.771 0.779 0.95% n.s. 0.782 1.41% ∗

utility
altruistic 0.853 0.876 2.68% ∗∗ 0.893 4.63% ∗∗
individual 0.832 0.858 3.13% ∗∗ 0.879 5.64% ∗∗

non-modular
mirroring

altruistic 0.728 0.714 -1.98% ∗ 0.716 -1.63% n.s.
individual 0.677 0.674 -0.39% n.s. 0.679 0.33% n.s.

utility
altruistic 0.714 0.707 -1.09% n.s. 0.709 -0.77% n.s.
individual 0.701 0.696 -0.70% n.s. 0.695 -0.90% n.s.

Benchmark scenarios with top-down task allocation

positive
modular n.a.

altruistic 0.937 0.946 0.97% ∗∗ 0.946 0.97% ∗∗
individual 0.936 0.945 0.94% ∗∗ 0.945 0.94% ∗∗

non-modular n.a.
altruistic 0.742 0.719 -3.08% ∗∗ 0.719 -3.08% ∗∗
individual 0.736 0.723 -1.78% ∗ 0.723 -1.78% ∗

negative
modular n.a.

altruistic 0.939 0.931 -0.83% ∗∗ 0.931 -0.83% ∗∗
individual 0.935 0.931 -0.45% n.s. 0.931 -0.45% n.s.

non-modular n.a.
altruistic 0.737 0.716 -2.86% ∗∗ 0.716 -2.86% ∗∗
individual 0.742 0.705 -5.09% ∗∗ 0.705 -5.09% ∗∗

Parameters: Shock: Correlation of shocks ρ; Pattern: Interdependence pattern; Task alloc.: Re-
allocation weight γ, Incentive: Incentive parameter λ; n.a. indicates that the parameter is not ap-
plicable in the scenario (see Tab. 1)

Symbols: P̄50: average normalized performance in period t (Eq. 13); ∆rel
τ:t: relative difference between

normalized performances in periods τ and t.
Significance is computed using a paired t-test: n.s.: p > 0.05; ∗: p ≤ 0.05; ∗∗: p ≤ 0.01.
Bold (green) and italic (red) font indicates that the performance is significantly higher and lower,
respectively, compared to the pre-shock performance.

after 200 periods. However, results suggest that achieving recovery in the short
term (50 periods after a shock) takes longer when task re-allocation is based on
mirroring and incentives are altruistic. In such instances, the performance level
attained 50 periods after the shock had not yet reached pre-shock levels.

Scenarios with top-down task allocation In scenarios featuring top-down
task allocation, an organization’s ability to recover from environmental disrup-
tions is significantly influenced by the interplay between the task structure and
the severity of the shock. Specifically, moderate (positively correlated) shocks
and tasks with a modular interdependence structure allow organizations to im-
prove their performance levels relative to the pre-shock performance even in the
short term. However, when faced with a more severe (negatively correlated) shock
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and a modular task structure, an organization’s recovery is contingent on the
incentive mechanism in place, with only individualistic incentives enabling the
organization to attain pre-shock performance. Moreover, when the task struc-
ture features a non-modular interdependence, organizations cannot fully recover
from shocks, meaning that neither in the short nor long term can they achieve
pre-shock performance levels, with this result holding true for both moderate
(positively correlated) and more severe (negatively correlated) shocks.

Comparison between scenarios The findings, as presented in Tab. 3, reveal
that top-down designed organizations hold an advantage in the recovery process
only under certain conditions. Specifically, such organizations are better posi-
tioned to recover if the interdependence structure underlying the task at hand
is modular, if task re-allocation follows the mirroring hypothesis, and if the or-
ganization experiences a moderate shock. However, in all other cases, the ability
of top-down designed organizations to recover from shocks and retain pre-shock
performance is lower when compared to their bottom-up designed counterparts.
For instance, when the task structure is modular and the shock is severe, top-
down designed organizations exhibit a performance that is similar to, or slightly
below, the pre-shock performance. In contrast, bottom-up designed organizations
are able to achieve a performance that exceeds pre-shock performance or is, at
the very least, equivalent to pre-shock performance. Similarly, in the case of non-
modular task structures, bottom-up designed organizations are able to restore
their performance to pre-shock levels, whereas top-down designed organizations
exhibit a performance that is significantly lower than pre-shock levels.

These findings reaffirm the vital role of social connections (and collaboration)
in organizational resilience, as highlighted in prior studies like Su and Junge
[22], with a special focus on the benefits of internal collaborative dynamics. It
demonstrates that inter-departmental collaboration within organizations facil-
itates both recovery from disruptions and performance enhancement, particu-
larly when incorporating dynamic task allocation. Additionally, the study draws
parallels with firms’ strategies during the COVID-19 pandemic—i.e., boosted
employee communication and collaboration with remote-working technologies,
resulting in performance increases—, as, amongst others, investigated by Guan
et al. [7].

4 Conclusions

This paper extends previous research on organizational adaptation and design
[12] by including a more fine-grained model of motives during task allocation
and a model of exogenously controllable environmental disruptions. The results
of this study provide valuable insights into the resilience of bottom-up designed
organizations, specifically the impact of micro-level task allocation decisions on
the macro-level resilience of an organization. The findings indicate that a bottom-
up designed structure enhances an organization’s ability to absorb adverse effects
triggered by environmental disruptions. Furthermore, the results suggest that
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while top-down designed organizations may have advantages in certain contexts,
the flexibility and decentralized nature of bottom-up designed organizations may
enable them to recover from disruptions in a wider range of scenarios.

The results presented in this paper focus exclusively on the resilience of a
single organization. However, disruptions in the environment can have a ripple
effect throughout the entire supply chain, affecting interdependent organizations.
Therefore, future research could explore the resilience of bottom-up designed
organizations within a network of interdependent organizations. Furthermore,
the model presented in this paper assumes that disruptions in the environment
only affect the performance contributions, while the interdependence patterns
remain unchanged. However, future research could extend the effects of shocks
to changes in the interdependence patterns as well.
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